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It is well known that the entropy of the microcanonical ensemble cannot be calculated as the Legendre
transform of the canonical free energy when the entropy is nonconcave. To circumvent this problem, a gener-
alization of the canonical ensemble that allows for the calculation of nonconcave entropies was recently
proposed. Here, we study the mean-field Curie-Weiss-Potts spin model and show, by direct calculations, that
the nonconcave entropy of this model can be obtained by using a specific instance of the generalized canonical
ensemble known as the Gaussian ensemble.
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Systems involving long-range interactions, such as gravi-
tational forces or wave-particle interactions, have many un-
usual properties at equilibrium that set these systems apart
from those involving short-range interactions �1,2�. The root
of most, if not all, of these unusual properties can be traced
back to the fact that the microcanonical entropy function of
long-range systems can be nonconcave as a function of the
energy, even in the thermodynamic limit. By constrast, short-
range systems can have nonconcave entropies at finite vol-
ume, but any nonconcave parts of the entropy must and will
disappear in the thermodynamic limit, leaving a thermody-
namic entropy that is always concave �3�. This has profound
physical consequences because the concavity of the entropy
determines ultimately whether the microcanonical ensemble
�ME� is equivalent with the canonical ensemble �CE�. If the
entropy is concave, then the two ensembles are equivalent;
otherwise they are nonequivalent at both the thermodynamic
and macrostate levels �4,5�. Thus short-range systems always
have equivalent ensembles, but long-range systems need not;
they can have equilibrium properties within the ME that have
no counterparts in the CE. Many illustrations of this possi-
bility have been given recently for a variety of systems, in-
cluding those arising in the study of gravitation �6,7�, turbu-
lence �5,8�, plasmas �9�, and magnetism �10–13�.

Systems with nonconcave entropies are special not only in
terms of their equilibrium properties, but also in the way in
which their entropy can be calculated. In cases of ensemble
equivalence, it is well-known that the microcanonical en-
tropy function can be calculated as the Legendre transform
of the canonical free energy function. This way of calculat-
ing the entropy goes back to Gibbs, and is nowadays the way
of choice for calculating entropies because of the many prac-
tical advantages it offers. One well known advantage is that
calculations carried out at the level of the free energy are
generally more tractable than those carried out at the level of
the entropy directly. Another advantage is that the definition
of the free energy allows for many approximation schemes

�e.g., perturbative expansions or variational principles�, that
are not available in the microcanonical ensemble.

The problem for systems having a nonconcave entropy is
that the entropy does not correspond to the Legendre trans-
form of the free energy any longer. This is obvious if one
recalls that Legendre transforms yield only concave func-
tions. Therefore, if one knows or suspects that a given sys-
tem has a nonconcave entropy, then one also knows that this
entropy cannot be calculated in the CE as the Legendre
transform of the free energy. In this case, one must rely on
the ME to perform that calculation �see, e.g., �12,14��.

Our goal in this Rapid Communication is to illustrate an
alternative method for calculating entropy functions that
goes beyond the CE in that it can be used to obtain noncon-
cave entropies. The method is not based on the ME. Rather,
it is based on a generalized canonical ensemble �GCE� put
forward recently by us, and works by modifying the structure
of the Legendre transform through the use of a generalization
of the free energy function. We have already presented the
theory of the GCE and of its equivalence with the ME in
�15,16�; our goal here is to illustrate this theory with the help
of a simple spin model known as the mean-field Curie-
Weiss-Potts model �10,13�. For this model, we shall calculate
a nonconcave entropy function using the GCE, and show that
the result agrees, in some appropriate limit, with the one
obtained in the ME. In doing so, we shall explain a number
of practical aspects of the GCE that have not been fully
discussed before.

To begin, we review the definition of the GCE and the
results establishing equivalence of this ensemble with the
ME. Following our previous work �15,16�, we define the
GCE by the following probability density over the mi-
crostates �:

Pn,g,���� =
e−�nh���−ng„h���…

Zn,g���
. �1�

In this expression, h���=H��� /n is the energy per particle or
mean energy, � is a real parameter, g�h� is a continuous but
otherwise arbitrary function of h, and Zn,g��� is a normaliza-
tion constant given by
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Zn,g��� =� e−�nh���−ng„h���…d� . �2�

This function is naturally interpreted as a generalized parti-
tion function; from it, we define a generalized free energy via
the usual limit

�g��� = − lim
n→�

1

n
ln Zn,g��� . �3�

It is obvious that Pn,g,���� and, consequently, Zn,g��� and
�g��� reduce to their standard canonical-ensemble expres-
sions for g=0 �17�. This explains why we use the term “gen-
eralized” CE.

To complete this short review of the GCE, we state the
generalized Legendre transform that will be used hereafter to
obtain the entropy of the ME from the free energy of the
GCE. At this point, we recall the thermodynamic-limit defi-
nition of the microcanonical entropy:

s�u� = lim
n→�

1

n
ln � �„h��� − u…d� . �4�

In terms of �g��� we then have the following: If, for a given
choice of g, �g��� is differentiable at �, then

s�ug,�� = �ug,� + g�ug,�� − �g��� , �5�

where ug,�=�g���� �see �16�, Theorem 4�. The choice g=0
yields, as expected, the standard Legendre transform

s�u�� = �u� − ����, u� = ����� , �6�

where ����=�g=0��=�� stands for the free energy of the
CE. For the remaining, it is useful to note that ug,� represents
the equilibrium mean energy of the GCE with function g and
parameter � �18�. This parallels the case of the CE for which
u�=����� represents the equilibrium mean energy of the CE
with inverse temperature �.

We now come to the main point of this Rapid Communi-
cation, which is to consider a system known to have a non-
concave entropy, and show that the system’s entropy can be
derived from the sole point of view of the GCE by first
calculating �g��� for that system and then by applying to
�g��� the generalized Legendre transform shown in �5�. The
model that we consider for this purpose is the q-state mean-
field Curie-Weiss-Potts �CWP� model �10,13,19� defined by
the Hamiltonian

H��� = −
1

2n
�

i,k=1

n

���i,�k� . �7�

In this expression, ��x ,y� is the Kronecker symbol, �i is a
spin variable taking values in the set �= �	1 ,	2 , . . . ,	q�, and
� represents the complete configuration of n spins, i.e., �
= ��1 ,�2 , . . . ,�n�. For simplicity, we consider the case q=3,
so that spins can take only one of three possible values: 	1,
	2, and 	3.

Despite the rather simple nature of the CWP model, a
complete, analytical calculation of its generalized free energy
seems out of reach. For a start, the integral defining the gen-
eralized partition Zn,g��� does not seem to be explicitly solv-

able, so that the calculation of �g��� cannot proceed from a
direct evaluation of Eqs. �2� and �3�. Fortunately, there is an
alternative way to calculate �g��� suggested by large-
deviation techniques. It involves three steps �5,15�.

�i� Rewrite the energy per spin h���=H��� /n as a func-
tion of some macrostate or order parameter 
���. In our case,
we choose the macrostate to be the empirical vector 

= �
1 ,
2 ,
3�, the jth component of which is defined by


 j =
1

n
�
k=1

n

���k,	
j� . �8�

A short calculation shows indeed that h���= h̃(
���), where

h̃�
�=− 1
2 	
 ,

. The component 
 j represents the relative

number of spins in � equal to 	 j; 0�
 j �1, � j
 j =1. For this
reason, 
��� is often called the statistical distribution of spin

states or spin distribution for short. The function h̃ is called
the energy representation function.

�ii� Derive the expression of an entropy function s̃�
� for
the macrostate 
. In the case of the empirical vector, that
entropy function is well known to be given by the statistical
�Boltzmann-Shannon� entropy

s̃�
� = − �
j=1

3


 j ln 
 j . �9�

�iii� Calculate �g���, finally, using the following represen-
tation formula:

�g��� = inf



��h̃�
� + g„h̃�
�… − s̃�
�� . �10�

The infimum is evaluated over all allowed values of 
, i.e.,
all triplets 
= �
1 ,
2 ,
3� such that 0�
 j �1 and � j
 j =1.

Equation �10� was solved numerically using a quadratic
function g of the form g�u�=�u2 /2, where �0 �20�. This
choice of g defines a GCE known as the Gaussian ensemble
�GE� �21�. Figure 1 shows the result of the numerical com-
putation for three increasing values of the parameter �. For
each value, the free energy of the GE, which we denote by
�����, has the particularity that it possesses one nondifferen-
tiable point, located at ��, separating two differentiable
branches. The left branch is a linear function of � with a
slope independent of �. The value of the slope is equal to
−1/6, which is the maximum admissible value of h �22�. To

FIG. 1. Gaussian free energy of the CWP model for different
values of �. The dashed lines show the location of ��.
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obtain the value of s�u� at this specific value of h, which we
denote by umax, we simply need at this point to apply Eq. �5�
to the left branch of �����. The result obtained is s�umax�
=ln 3, which is the correct value found in the ME corre-
sponding physically to the entropy of the excited state of the
CWP model. The right, differentiable branch of ����� can be
treated similarly with the difference that ������ is not a con-
stant but takes values in a range of the form �umin,u��, where
umin=������=−1/2 and u�=������+0�. The calculation of
Eq. �5� for the right branch of �� therefore yields s�u� in that
range. The result is displayed in Fig. 2�a� together with the
exact entropy function s�u� derived directly from the ME
�see Eq. �4.3� in �13��. Note that, in order to accentuate the
relatively shallow nonconcave region of s�u� near umax, we
have plotted the derivative of the entropy in Fig. 2�a� rather
than the entropy itself.

The comparison in Fig. 2�a� of the entropy obtained in the
GE with the “true” entropy of the ME shows that the use of
the GE enables us to obtain s�u� in a gradual manner by
increasing the value of the parameter �. For �=0, s�u� is
recovered from the ground-state mean energy umin=−1/2 up
to the value u�=0=−1/4, while for �=5, s�u� is recovered
from umin to u5�−0.1883�u0. Increasing the parameter �
further to �=20, we obtain s�u� from umin up to
u20�−0.1706�u5. The case �=0 corresponds to the CE, so
that the part of s�u� obtained in this ensemble corresponds to
the concave part of s�u� determined by Maxwell’s construc-
tion or, equivalently, by the set of supporting lines of that
function; see �16� for details. Thus, we see that a virtue of the
GE with ��0 over the CE is that the former ensemble is
able to recover nonconcave points of the entropy function
while the latter is not.

By continuing to increase �, we can calculate the value u�

up to which the GE is able to recover s�u�. The results are

shown in Fig. 2�b�, as well as in Fig. 2�c�. The conclusion
that we reach from these two figures is that the GE recovers
the complete entropy function of the CWP model in the limit
�→�, since u�→umax=−1/6 in that limit. Hence, for a fi-
nite, positive value of �, the GE recovers only a part of s�u�,
but the part of s�u� “missed” by the GE can be made arbi-
trarily small by choosing large enough values of �. In this
sense, we say that the GE and the ME are asymptotically
equivalent. In general, we know that the GE should be
equivalent with the ME at all values of h whenever � is
greater than the maximum value of s��u� �see �15�, Theorem
5.2�. In the case of the CWP, s��u� diverges at umax, which
explains why the two ensembles become equivalent for all
u� �umin,umax� only in the limit �→�. An analytical study
of this limit is presented in �23� �see also �15,16��.

We can go further in our study of the CWP model by
showing that the GE can be used not only to calculate s�u�
but also to calculate the microcanonical equilibrium values
of 
 of that model. This aspect of the GE, which we refer to
as the macrostate level of ensemble equivalence, is illus-
trated in Fig. 3. This figure shows two sets of plots. The one
on the left shows the equilibrium values of 
 calculated in
the GE as a function of � �24�, while the one on the right
displays the same points but now as a function of their mean

energy u= h̃�
� �black line�. Note that only the first compo-
nent of 
 is plotted because the equilibrium value of 
 in the
GE has the form 
= �a ,b ,b� �20�. The comparison with the
ME is established by plotting the equilibrium value of a in
the ME �see Eq. �4.1� in �13�� for all u� �umin,umax�
�gray line�.

The results obtained from these calculations show that the
GE recovers the equilibrium macrostates of the ME for all
u� �umin,u��, with u� approaching umax for increasing �.

FIG. 2. �a� Derivative of the entropy function found for the
CWP model using the GE �black line� and ME �gray line�. The
dashed lines show the mean energy value u� up to which there is
equivalence between the GE and ME. �b� Convergence of u� toward
umax. �c� ��=ln �umax−u�� versus ln �.

FIG. 3. �a� First component a of the equilibrium value of 
 in
the GE as a function of �. �b� Equilibrium value of a in the GE as
a function of the equilibrium mean energy of that ensemble �black
line�; equilibrium value of a in the ME �gray line�. The dashed lines
show the mean energy value u� up to which there is equivalence
between the GE and ME.
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The value u� here is the same as the one found previously
when calculating s�u�, so that the range of mean energy val-
ues for which we have equivalence of ensembles at the level
of 
 is exactly the range over which we have equivalence of
ensembles at the thermodynamic level, i.e., the level of s�u�.
This is not a coincidence but a direct result of the fact that
equivalence of the GE and ME at the thermodynamic level
entails, essentially, the equivalence of these ensembles at the
macrostate level �15,16�. As a result, we can conclude that
the GE recovers, in the limit �→�, the microcanonical equi-
librium values of 
 for all u� �umin,umax�, since it com-
pletely recovers s�u� in the same limit.

In the end, it is interesting to note that the asymptotic
equivalence of the GE and ME is reflected, at the macrostate
level, by the fact that the jump of a, seen in the GE as a
function of �, disappears as �→� �Fig. 3�. It can be proved
in general that the disappearance of this jump, which is re-
sponsible for the nondifferentiable point of ����� �Fig. 1�, is
a sufficient condition for the complete equivalence of the GE
and ME �see �16�, Theorem 4�. From a physical point of
view, this means that the absence of a first-order phase tran-

sition in the GE is a sufficient condition for the equivalence
of the GE and ME.

To summarize, we have considered a mean-field version
of the Potts model to show that the nonconcave entropy
function of this spin model can be calculated using a gener-
alization of the canonical ensemble known as the Gaussian
ensemble. The large-deviation formalism that we have used
to study this model is totally general in that it can be applied
to other models known to have nonconcave entropies. Our
future work will aim at studying a number of these models
�see, e.g., �25��, in addition to studying other types of gener-
alized canonical ensembles, including the one defined by the
function g�u�=��u�. Although the Gaussian ensemble is
thought to be universal, in the sense that it should be able to
recover any form of entropy function �15,16�, other general-
ized ensembles could be useful, in that they may lead to
more tractable calculations than those carried out in the
Gaussian ensemble �see, e.g., �26��.
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